SL Paper 1

Let $\sin heta = rac{2}{\sqrt{13}}$, where $rac{\pi}{2} < heta < \pi$.

- a. Find $\cos \theta$.
- b. Find $\tan 2\theta$.

Let $f(x) = rac{\cos x}{\sin x}$, for $\sin x
eq 0$.

In the following table, $f'\left(\frac{\pi}{2}\right) = p$ and $f''\left(\frac{\pi}{2}\right) = q$. The table also gives approximate values of f'(x) and f''(x) near $x = \frac{\pi}{2}$.

x	$\frac{\pi}{2}$ -0.1	$\frac{\pi}{2}$	$\frac{\pi}{2}$ +0.1
f'(x)	-1.01	р	-1.01
<i>f</i> "(x)	0.203	q	-0.203

a. Use the quotient rule to show that $f'(x) = \frac{-1}{\sin^2 x}$. [5]

- b. Find f''(x).
- c. Find the value of p and of q.

d. Use information from the table to explain why there is a point of inflexion on the graph of f where $x = \frac{\pi}{2}$. [2]

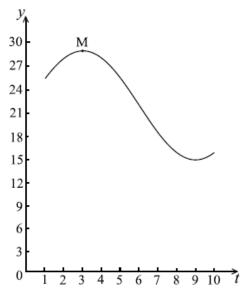
Let $f(t) = a \cos b(t-c) + d$, $t \ge 0$. Part of the graph of y = f(t) is given below.

[3]

[5]

[3]

[3]



When t = 3, there is a maximum value of 29, at M. When t = 9, there is a minimum value of 15.

a(i),((i)), (iif) iand this) value of a.

- (ii) Show that $b = \frac{\pi}{6}$.
- (iii) Find the value of *d*.
- (iv) Write down a value for c.

b.	The transformation P is given by a horizontal stretch of a scale factor of $\frac{1}{2}$, followed by a translation of $\begin{pmatrix} 3 \\ -10 \end{pmatrix}$.	[2]
	Let M' be the image of M under P. Find the coordinates of M' .	
c.	The graph of g is the image of the graph of f under P .	[4]
	Find $g(t)$ in the form $g(t) = 7 \cos B(t-c) + D$.	
d.	The graph of g is the image of the graph of f under P .	[3]
	Give a full geometric description of the transformation that maps the graph of g to the graph of f .	

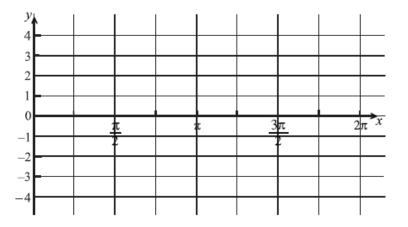
[7]

[1]

[3]

Consider $g(x) = 3\sin 2x$.

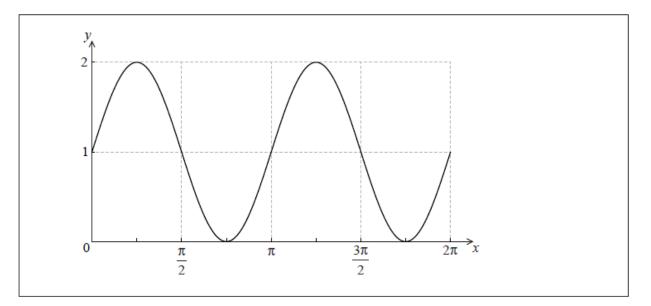
a. Write down the period of g .	
b. On the diagram below, sketch the curve of g , for $0 \le x \le 2\pi$.	



c. Write down the number of solutions to the equation g(x)=2 , for $0\leq x\leq 2\pi$.

Let $f(x) = (\sin x + \cos x)^2$.

- a. Show that f(x) can be expressed as $1 + \sin 2x$.
- b. The graph of f is shown below for $0 \leq x \leq 2\pi$.



Let $g(x) = 1 + \cos x$. On the same set of axes, sketch the graph of g for $0 \leq x \leq 2\pi$.

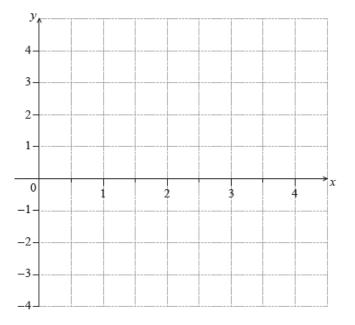
c. The graph of g can be obtained from the graph of f under a horizontal stretch of scale factor p followed by a translation by the vector $\begin{pmatrix} k \\ 0 \end{pmatrix}$. [2] Write down the value of p and a possible value of k.

Let $f(x)=\sqrt{3}{
m e}^{2x}\sin x+{
m e}^{2x}\cos x$, for $0\leq x\leq\pi$. Solve the equation f(x)=0 .

[2]

Let
$$f(x)=3\sin\Bigl(rac{\pi}{2}x\Bigr)$$
, for $0\leqslant x\leqslant 4.$

- a. (i) Write down the amplitude of f.
 - (ii) Find the period of f.
- b. On the following grid sketch the graph of f.



Given that $\sin x = rac{3}{4}$, where x is an obtuse angle,

- a. find the value of $\cos x$;
- b. find the value of $\cos 2x$.

[4] [3]

Note: In this question, distance is in metres and time is in seconds.

Two particles P_1 and P_2 start moving from a point A at the same time, along different straight lines.

After t seconds, the position of P_1 is given by $\mathbf{r} = \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$.

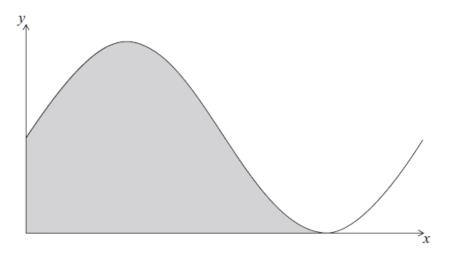
Two seconds after leaving A, $P_{\rm 1}$ is at point B.

[4]

Two seconds after leaving A, P_2 is at point C, where $\overrightarrow{\mathrm{AC}} = \begin{pmatrix} 3\\ 0\\ 4 \end{pmatrix}$.

a. Find the coordinates of A.	[2]
b.i.Find \overrightarrow{AB} ;	[3]
b.iiFind $\left \overrightarrow{AB} \right $.	[2]
c. Find $\cos B\hat{A}C$.	[5]
d. Hence or otherwise, find the distance between P_1 and P_2 two seconds after they leave A.	[4]

Let $f(x) = 6 + 6 \sin x$. Part of the graph of f is shown below.



The shaded region is enclosed by the curve of f, the x-axis, and the y-axis.

a(i) Solv(ii) for $0 \leq x < 2\pi$

[5]

[1]

[6]

(i) $6 + 6\sin x = 6$;

- (ii) $6 + 6\sin x = 0$.
- b. Write down the exact value of the *x*-intercept of *f* , for $0 \le x < 2\pi$.
- c. The area of the shaded region is k. Find the value of k, giving your answer in terms of π .
- d. Let $g(x) = 6 + 6 \sin\left(x \frac{\pi}{2}\right)$. The graph of f is transformed to the graph of g. [2]

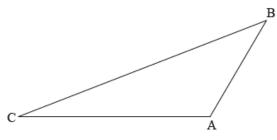
Give a full geometric description of this transformation.

e. Let $g(x) = 6 + 6\sin\left(x - \frac{\pi}{2}\right)$. The graph of f is transformed to the graph of g. [3]

Given that $\int_p^{p+rac{3\pi}{2}}g(x)\mathrm{d}x=k$ and $0\leq p<2\pi$, write down the two values of p.

The following diagram shows triangle ABC.

diagram not to scale



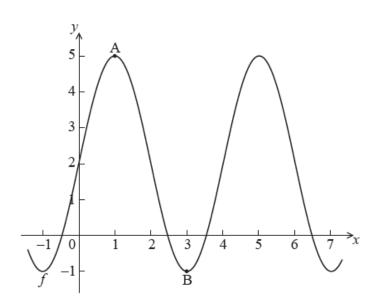
Let $\overrightarrow{AB} \bullet \overrightarrow{AC} = -5\sqrt{3}$ and $\left|\overrightarrow{AB}\right| \left|\overrightarrow{AC}\right| = 10$. Find the area of triangle ABC.

Solve $\cos 2x - 3\cos x - 3 - \cos^2 x = \sin^2 x$, for $0 \le x \le 2\pi$.

Let $f: x \mapsto \sin^3 x$.

a. (i) Write down the range of the function f .	[5]
(ii) Consider $f(x)=1$, $0\leq x\leq 2\pi$. Write down the number of solutions to this equation. Justify your answer.	
b. Find $f'(x)$, giving your answer in the form $a { m sin}^p x { m cos}^q x$ where $a, p, q \in \mathbb{Z}$.	[2]
c. Let $g(x) = \sqrt{3} \sin x (\cos x)^{\frac{1}{2}}$ for $0 \le x \le \frac{\pi}{2}$. Find the volume generated when the curve of g is revolved through 2π about the x-axis.	[7]

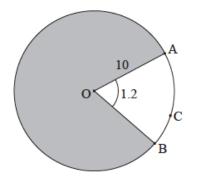
The diagram below shows part of the graph of a function f.



The graph has a maximum at A(1, 5) and a minimum at B(3, -1).

The function f can be written in the form $f(x) = p \sin(qx) + r$. Find the value of

The following diagram shows a circle with centre O and a radius of 10 cm. Points A, B and C lie on the circle.



[2]

[3]

[6]

[3]

Angle AOB is 1.2 radians.

a. Find the length of $\operatorname{arc}\,ACB.$

b. Find the perimeter of the shaded region.

The following table shows the probability distribution of a discrete random variable A, in terms of an angle θ .

а	1	2
$\mathbb{P}(A = a)$	$\cos \theta$	$2\cos 2\theta$

a. Show that
$$\cos \theta = \frac{3}{4}$$
.

b. Given that $\tan \theta > 0$, find $\tan \theta$.

c. Let $y = \frac{1}{\cos x}$, for $0 < x < \frac{\pi}{2}$. The graph of *y* between $x = \theta$ and $x = \frac{\pi}{4}$ is rotated 360° about the *x*-axis. Find the volume of the solid formed. [6]

- a. Show that $4 \cos 2\theta + 5 \sin \theta = 2 \sin^2 \theta + 5 \sin \theta + 3$.
- b. Hence, solve the equation $4 \cos 2\theta + 5 \sin \theta = 0$ for $0 \le \theta \le 2\pi$.

Solve $\log_2(2\sin x) + \log_2(\cos x) = -1$, for $2\pi < x < rac{5\pi}{2}.$

The straight line with equation $y = \frac{3}{4}x$ makes an acute angle θ with the x-axis.

a. Write down the value of $\tan \theta$.	[1]
b(i) lained (the value of	[6]
(i) $\sin 2\theta$;	

(ii) $\cos 2\theta$.

Let $\sin heta = rac{\sqrt{5}}{3}$, where heta is acute.

- a. Find $\cos \theta$.
- b. Find $\cos 2\theta$.

Let $f(x) = \sin^3 x + \cos^3 x \tan x, rac{\pi}{2} < x < \pi$.

- a. Show that $f(x) = \sin x$.
- b. Let $\sin x = rac{2}{3}$. Show that $f(2x) = -rac{4\sqrt{5}}{9}$.

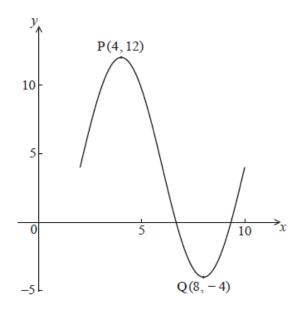
The following diagram shows the graph of $f(x) = a \sin(b(x-c)) + d$, for $2 \leq x \leq 10$.

[5]

[3]

[2]

- [2]
- [5]



There is a maximum point at P(4, 12) and a minimum point at Q(8, -4).

a(i),L(ii);eathore (iii))aph to write down the value of

(i) *a*;

- (ii) *c*;
- (iii) d.
- b. Show that $b = \frac{\pi}{4}$.
- c. Find f'(x).
- d. At a point R, the gradient is -2π . Find the *x*-coordinate of R.

The expression $6 \sin x \cos x$ can be expressed in the form $a \sin bx$.

a. Find the value of a and of b.	[3]
b. Hence or otherwise, solve the equation $6\sin x\cos x = rac{3}{2}$, for $rac{\pi}{4} \leq x \leq rac{\pi}{2}$.	[4]

[3]

[2]

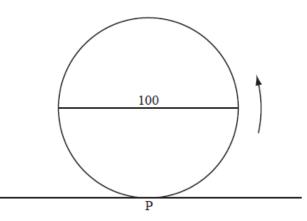
[3]

[6]

a. Let $\sin 100^\circ = m$. Find an expression for $\cos 100^\circ$ in terms of <i>m</i> .	[3]
b. Let $\sin 100^\circ = m$. Find an expression for $\tan 100^\circ$ in terms of <i>m</i> .	[1]
c. Let $\sin 100^\circ = m$. Find an expression for $\sin 200^\circ$ in terms of <i>m</i> .	[2]

Let $\int_{\pi}^{a} \cos 2x dx = \frac{1}{2}$, where $\pi < a < 2\pi$. Find the value of a.

The following diagram represents a large Ferris wheel, with a diameter of 100 metres.



Let P be a point on the wheel. The wheel starts with P at the lowest point, at ground level. The wheel rotates at a constant rate, in an anticlockwise (counter-clockwise) direction. One revolution takes 20 minutes.

Let h(t) metres be the height of P above ground level after t minutes. Some values of h(t) are given in the table below.

t	h(t)
0	0.0
1	2.4
2	9.5
3	20.6
4	34.5
5	50.0

10 minutes;

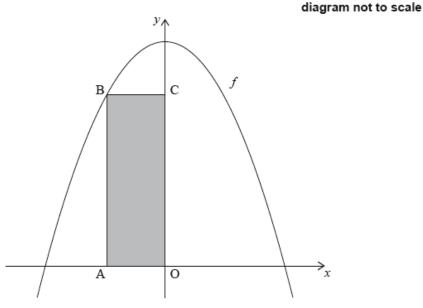
(i)

a(i) Whittii) down the height of P above ground level after

(ii)	15 minutes.	
b(i) (ai)nc	(Show that $h(8) = 90.5$.	[4]
(ii)	Find $h(21)$.	
c. Ske	tch the graph of h , for $0 \le t \le 40$.	[3]
d. Giv	en that <i>h</i> can be expressed in the form $h(t) = a \cos bt + c$, find <i>a</i> , <i>b</i> and <i>c</i> .	[5]

[2]

Let $f(x) = 15 - x^2$, for $x \in \mathbb{R}$. The following diagram shows part of the graph of f and the rectangle OABC, where A is on the negative x-axis, B is on the graph of f, and C is on the y-axis.



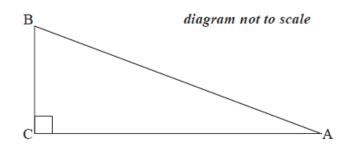
Find the *x*-coordinate of A that gives the maximum area of OABC.

Let $f(x) = \sin\left(x + \frac{\pi}{4}\right) + k$. The graph of *f* passes through the point $\left(\frac{\pi}{4}, 6\right)$.

- a. Find the value of k.
- b. Find the minimum value of f(x).

c. Let $g(x) = \sin x$. The graph of g is translated to the graph of f by the vector $\begin{pmatrix} p \\ q \end{pmatrix}$. Write down the value of p and of q.

The following diagram shows a right-angled triangle, ABC, where sin $A = \frac{5}{13}$.



a. Show that
$$\cos A = \frac{12}{13}$$
.

b. Find $\cos 2A$.

[3]

[2]

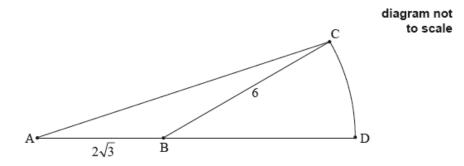
[2]

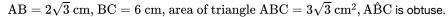
[3]

Let $f(x) = \cos 2x$ and $g(x) = 2x^2 - 1$.

a. Find
$$f\left(\frac{\pi}{2}\right)$$
. [2]

- b. Find $(g \circ f)\left(\frac{\pi}{2}\right)$.
- c. Given that $(g \circ f)(x)$ can be written as $\cos(kx)$, find the value of $k, k \in \mathbb{Z}$.





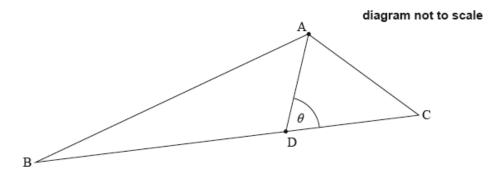
a. Find $A\hat{B}C$.

b. Find the exact area of the sector BDC.

Let
$$\overrightarrow{OA} = \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix}$$
 and $\overrightarrow{OB} = \begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix}$.

The point C is such that $\overrightarrow{AC} = \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$.

The following diagram shows triangle ABC. Let D be a point on [BC], with acute angle $ADC = \theta$.



The following diagram shows a triangle ABC and a sector BDC of a circle with centre B and radius 6 cm. The points A, B and D are on the same line.

[5]

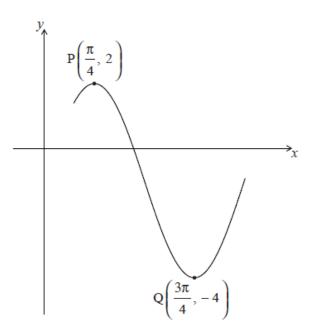
[2]

[3]

[3]

a.	(i) Find \overrightarrow{AB} .	[4]
	(ii) Find $\left \overrightarrow{AB} \right $.	
b.	Show that the coordinates of C are $(-2, 1, 3)$.	[1]
c.	Write down an expression in terms of $ heta$ for	[2]
	(i) angle ADB;	
	(ii) area of triangle ABD.	
d.	Given that $\frac{\text{area }\Delta \text{ABD}}{\text{area }\Delta \text{ACD}} = 3$, show that $\frac{\text{BD}}{\text{BC}} = \frac{3}{4}$.	[5]
e.	Hence or otherwise, find the coordinates of point D.	[4]

The diagram below shows part of the graph of $f(x) = a\cos(b(x-c)) - 1$, where a > 0 .



The point P $\left(\frac{\pi}{4}, 2\right)$ is a maximum point and the point Q $\left(\frac{3\pi}{4}, -4\right)$ is a minimum point.

a. Find the value of a.	[2]
b(i) (a) not that the period of f is π .	
(ii) Hence, find the value of b .	
c. Given that $0 < c < \pi$, write down the value of c .	[1]

Let $p = \sin 40^{\circ}$ and $q = \cos 110^{\circ}$. Give your answers to the following in terms of p and/or q.

a(i) Whoteidown an expression for

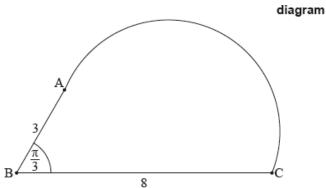
- (i) $\sin 140^\circ$;
- (ii) $\cos 70^\circ$.
- b. Find an expression for $\cos 140^\circ$.
- c. Find an expression for $\tan 140^\circ$.

The following diagram shows triangle ABC, with $AB = 3 \text{ cm}, BC = 8 \text{ cm}, \text{ and } ABC = \frac{\pi}{3}.$



a. Show that AC = 7 cm.

b. The shape in the following diagram is formed by adding a semicircle with diameter [AC] to the triangle.



Find the exact perimeter of this shape.

The following diagram shows triangle PQR.

diagram not to scale

[3]

[1]

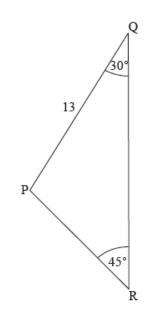
[4]

[3]

diagram not to scale

[2]

[4]



 $\hat{PQR}=30^\circ,~\hat{QRP}=45^\circ\,\text{and}~PQ=13\,\text{cm}\,.$

Find PR.

Let
$$f(x) = \mathrm{e}^{-3x}$$
 and $g(x) = \mathrm{sin}\Big(x - \frac{\pi}{3}\Big)$.

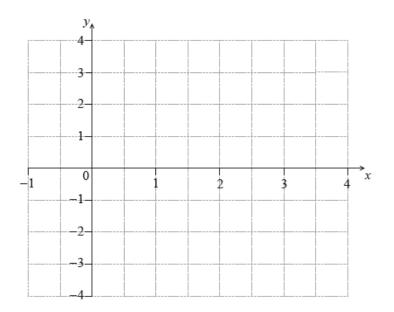
- a. Write down
 - (i) f'(x);
 - (ii) g'(x).
- b. Let $h(x) = e^{-3x} \sin\left(x \frac{\pi}{3}\right)$. Find the exact value of $h'\left(\frac{\pi}{3}\right)$.

a. Given that $\cos A = rac{1}{3}$ and $0 \le A \le rac{\pi}{2}$, find $\cos 2A$.	[3]
b. Given that $\sin B = \frac{2}{3}$ and $\frac{\pi}{2} \le B \le \pi$, find $\cos B$.	[3]

b. Given that $\sin B = rac{2}{3}$ and $rac{\pi}{2} \leq B \leq \pi$, find $\cos B$.

Let $f(x) = 3\sin(\pi x)$.

a. Write down the amplitude of f .	[1]
b. Find the period of f .	[2]
c. On the following grid, sketch the graph of $y=f(x)$, for $0\leq x\leq 3.$	[4]



The first two terms of an infinite geometric sequence are $u_1 = 18$ and $u_2 = 12\sin^2\theta$, where $0 < \theta < 2\pi$, and $\theta \neq \pi$.

a.i. Find an expression for r in terms of θ .	[2]
a.ii.Find the possible values of <i>r</i> .	[3]
b. Show that the sum of the infinite sequence is $\frac{54}{2+\cos{(2\theta)}}$.	[4]
c. Find the values of θ which give the greatest value of the sum.	[6]

The following diagram shows the graph of $\ f(x) = a\cos(bx)$, for $0 \leq x \leq 4$.

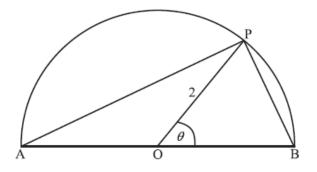


There is a minimum point at P(2, -3) and a maximum point at Q(4, 3).

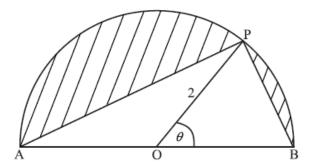
a(i	(i) (a) d (i) Write down the value of a.	
	(ii) Find the value of b .	
b.	Write down the gradient of the curve at P.	[1]
c.	Write down the equation of the normal to the curve at P.	[2]

The following diagram shows a semicircle centre O, diameter [AB], with radius 2.

Let P be a point on the circumference, with $\widehat{POB} = \theta$ radians.



Let S be the total area of the two segments shaded in the diagram below.



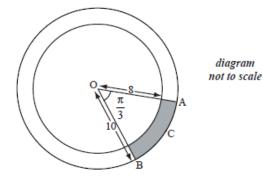
a. Find the area of the triangle OPB, in terms of θ .	[2]
b. Explain why the area of triangle OPA is the same as the area triangle OPB.	[3]
c. Show that $S = 2(\pi - 2\sin\theta)$.	[3]
d. Find the value of θ when S is a local minimum, justifying that it is a minimum.	[8]
e. Find a value of θ for which S has its greatest value.	[2]

Let $f(x)=6x\sqrt{1-x^2}$, for $-1\leqslant x\leqslant 1$, and $g(x)=\cos(x)$, for $0\leqslant x\leqslant \pi.$

Let $h(x) = (f \circ g)(x)$.

- a. Write h(x) in the form $a\sin(bx)$, where $a,\ b\in\mathbb{Z}.$
- b. Hence find the range of h.

The diagram shows two concentric circles with centre O.



The radius of the smaller circle is 8 cm and the radius of the larger circle is 10 cm.

Points A, B and C are on the circumference of the larger circle such that \widehat{AOB} is $\frac{\pi}{3}$ radians.

- a. Find the length of the arc ACB .
- b. Find the area of the shaded region.

The vertices of the triangle PQR are defined by the position vectors

$$\overrightarrow{\mathrm{OP}} = \begin{pmatrix} 4\\ -3\\ 1 \end{pmatrix}, \overrightarrow{\mathrm{OQ}} = \begin{pmatrix} 3\\ -1\\ 2 \end{pmatrix} \text{ and } \overrightarrow{\mathrm{OR}} = \begin{pmatrix} 6\\ -1\\ 5 \end{pmatrix}.$$

a. Find

- (i) \overrightarrow{PQ} ;
- (ii) \overrightarrow{PR} .
- b. Show that $\cos R\widehat{P}Q = \frac{1}{2}$.
- c. (i) Find $sin R \widehat{P} Q$.

(ii) Hence, find the area of triangle PQR, giving your answer in the form $a\sqrt{3}$.

[2]

[4]

[2]

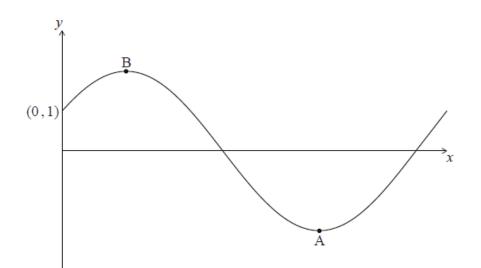
[3]

[7]

[6]

Solve the equation $2\cos x = \sin 2x$, for $0 \le x \le 3\pi$.

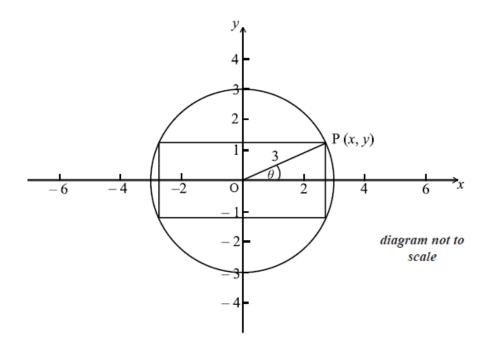
Let $f(x)=\cos x+\sqrt{3}\sin x$, $0\leq x\leq 2\pi$. The following diagram shows the graph of f .



The y-intercept is at (0, 1), there is a minimum point at A (p, q) and a maximum point at B.

a.	Find $f'(x)$.	[2]
b(i)	b(i) Heddii).	
	 (i) show that q = -2; (ii) verify that A is a minimum point. 	
c.	Find the maximum value of $f(x)$.	[3]
d.	The function $f(x)$ can be written in the form $r\cos(x-a)$.	[2]
	Write down the value of r and of a.	

A rectangle is inscribed in a circle of radius 3 cm and centre O, as shown below.



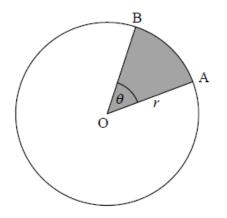
The point P(x, y) is a vertex of the rectangle and also lies on the circle. The angle between (OP) and the x-axis is θ radians, where $0 \le \theta \le \frac{\pi}{2}$.

a.	Writ	te down an expression in terms of θ for	[2]
	(i) (ii)		
h		y. the area of the rectangle be A .	[2]
D.			[3]
	Sno	w that $A=18\sin 2 heta$.	
c.	(i)	Find $\frac{\mathrm{d}A}{\mathrm{d}\theta}$.	[8]
	(ii)	Hence, find the exact value of θ which maximizes the area of the rectangle.	
	(iii)	Use the second derivative to justify that this value of θ does give a maximum.	

Let $h(x) = \frac{6x}{\cos x}$. Find h'(0) .

The following diagram shows a circle with centre O and radius *r* cm.

diagram not to scale

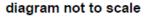


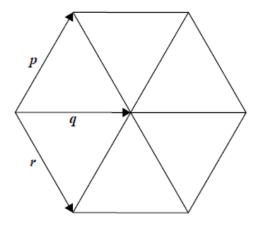
The points A and B lie on the circumference of the circle, and $\overrightarrow{AOB} = \theta$. The area of the shaded sector AOB is 12 cm² and the length of arc AB is 6 cm.

Find the value of *r*.

Six equilateral triangles, each with side length 3 cm, are arranged to form a hexagon.

This is shown in the following diagram.





The vectors \boldsymbol{p} , \boldsymbol{q} and \boldsymbol{r} are shown on the diagram.

Find $\boldsymbol{p} \cdot (\boldsymbol{p} + \boldsymbol{q} + \boldsymbol{r})$.